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ABSTRACT

We consider the pure initial value problem for the system of equations
) Ve = Vg * E(V) - w
2 w, = E(v = Yw), e,y >0,
the initial data being (v(x,0),w(x,0)) = (¢v(x),0). Here f£f(v) = =v + H(v - a)
where H 1is the Heaviside step function and a e (0,-;-) +» This system is of
the FitzHugh-Nagumo type, and has several applications including nerve
conduction and distributed chemical/biochemical systems. It is demonstrated
that this system exhibits a threshold phenomenon. This is done by considering
the curve s(t) defined by s(t) = sup{x:v(x,t) = al. The initial datum,
. ¢(x), is said to be superthreshold if 1lim s(t) = ®, It is proven that the

t*ﬂ
initial datum is superthreshold if y¢(x) > a on a sufficiently long

Coe o

interval, v(x) 1is sufficiently amooth, and ¢(x) decays sufficiently fast

to zero as |x| * =, ol e
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SIGNIFICANCE AND EXPLANATION

In this paper we consider a system of differential equations which have
several applications including nerve conduction and distributed
chemical /biochemical systems, Our primary interest is the threshold
properties of these equations. This corresponds, for example, to the
biological fact that a minimum stimulus is needed to trigger a nerve
impulse. One expects that if the initial stimulus is greater than some
threshold amount then a signal will be transmitted down the axon. 1In this
case we say that the initial stimulus is superthreshold. We demonstrate that
the equations under study do indeed exhibit threshold properties, and we find

sufficient conditions for the initial data to be superthreshold.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THRESHOLD PHENOMENA FOR A REACTION-DIFFUSION SYSTEM

. David Terman

¢ Section 1. Introduction.

In this paper we consider the pure initial value problem for the system of

equations:

(1.1) Ve = Ve t flv) = w

3 Wt'e(v-Yw)' €,Y>0,

the initial data being (v(x,0),w(x,0)) = (p(x),0). We assume that

"7
.4

f(v) = =v + H(v - a) where H 1is the Heaviside step function, and a e (0,%).

:i These equations arise as a model for the conduction of electrical impulses in a nerve
N axon. The most famous such model is due to Hodgkin and Huxley [13), however a
mathematical analysis of their model has proven very difficult. The complexity of the
Hodgkin and Huxley model led FitzHugh [8] and Nagumo, Arimoto and Yoshizawa [15] to

L introduce the simpler system (1.1) with f(v) replaced by f1(v) = v(1 = v)(v - a),

™

The model we consider was introduced as a further simplification by McKean [14}.

e
-

Surveys of the physiological background of these equations may be found in Cohen ([S],
Hastings (11], and Rinzel [18].
. . Here v = v(x,t) represents the electrical potential along the axon as a

function of time t and position x, while w = w{(x,t) represents a recovery

AQ‘ variable needed in order that system {1.1) exhibit pulse shaped solutions. Thinking
&) of v¢(x) as the initial stimulus, one expects v(x,t) to behave in a manner
qualitatively similar to what is observed in the laboratory. For example, electrical
impulses in the nerve axon appear to move with constant shape and velocity.
Mathematically this corresponds to solutions of the form (wv{x,t),w(x,t))

= (vc(z),wc(z)), Z = x + ct. Such a solution is often called a traveling wave

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
fGrant No. MCS80-17158,
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solution. The existence of traveling wave solutions for the PitzHugh-Nagumo system,
with f,(v), was given by Carpenter [3], Comley (4], and Nastings [12] if the
parameter € is sufficiently small. Rinzel and Keller [19] considered the McKean
model with Y = 9. They obtained all of the traveling wave solutions together with
their apeeds of prepagatiom. Similar results fer the McKean model with Y > ¢ have
been obtained by Rinsel and Terman [20).

Our primary imterest is te study the threshold properties of these equations.
That is, if the initial datum, ¢(x), is sefficieatly small, thean the solution to
(1.1) will decay exponentially fast to sere as t + ®. Thia correspoads to the
biclogical fact that a minimem stisulus is needed to trigger a nerve impulse. In
this case we say thet ¢(x) is subthresheld. One expects, however, that if the
initial stimulus is sufficiently large, or superthreshkold, then a signal will be
transmitted down the amen. We show this to be the case if the parameter & is
chosen sufficiently small.

Throughout this paper we assume that the initial datum ¢ (x) satisfies

(a) v(x) e cl(m
(b)) vix) e [0,1]
{c) vi(x) =vl{-x) ia R
(1.2) (d) There exists a unigue oonstant x5 > 0 such that v(x,) = a

(e) ¢(ix) > a for |x| < xg

—:' (xo-x)
(£)  le(x)| < ae for x| > x,

(g)  ¥" is a bounded centinweus fuaction except poseibly when |x| = xge
This last condition is needed in order to obtain sufficient a priori beunds on the
derivatives of the solution of systea (1.1).
Note that in soms sense x, determines the size of the initial datum,

Therefore, we expect a signal to propagate if =xg is sufficiently large. 1In order

to be more precise we oonsider the curve s{(t) given by s(t) = sup{xiv(x,t) = al.




I S o .

We define v(x) to be guperthreshold if s(t) is defined for all t e R and

lim s(t) = =,

1 t”

i Note that because £(v) 1is discontinuous we cannot expect the solution (v,w)
to be very smooth. By a classical solution of system (1.1) we mean the following.
Definition: Let Sy, = R X (0,T) and Gy = {(x,t) @ Sp:v{x,t) # a}. Then

L i (vi{x,t),w(x,t)) {is said to be a classical solution of the Cauchy problem (1.1)

in ST it

(a) (v,w) along with (vx,wx) are bounded continuous functions in S'I"

: (b} in Gq, Vixt Ve and w, are continuous functions which satisfy

: the system of equations

vt-vx,(#f(v) -w

w, = €{v - Yw) ,

t

o (e) 1lim v(x,t) = ¢(x) and lim w(x,t) = 0 for each x€R .
5 40 t¥o
Throughout this paper we assume that there exists a unique classical solution of

the Cauchy problem (1.1) in R X rR*. 1 particular, we assume that there exist

= constants Vv and W such that Jv(x,t)} < VvV and |w(x,t)] < W in R x RY, Using

- ’ the method of invariant rectangles (see Weinberger {25]) Rauch and Smoller [17]

considered system (1.1) with f1(v) and showed that such bounds exist if

f,(v)

(1.3) lim | R
lojse VT

4 A similar argument shows that such bounds exist for system (1.1) with f£(v) if

N f(v) satisfies (1.3). The results of this paper are still valid if we assume that

f{v) = -v + H(v - a) for |v} < 1, £(v) is a smooth function with £'(v) < 0 for

vl > 1, and 1im l-”—v’l > %. In [23] it is shown that a classical solution of
o0

the Cauchy prob{‘e’n!l (1.1) does exist in S, for some T > 0.

It will also be necessary to assume that the curve s{t) does not behave too

wildly. These assumptions are described in the second paragraph of Section 3.

With these assumptions we prove the following result:

-3




Theorem 1.1: Choose a @ (!,-;-) end Y > 0. Then there exist pesitive conetants ¢
and 0 such that if ¢ @ (3,§) and wix) satéefiss (1.2) vith 2y > 0, Wes

v{x) is superthreshold.

In this paper we only find sefficient wonditions for the initiel data to be
superthreshold. Subthreshold results for the PFitzlugh-Nagumo model were given by
Rauch and Bwoller (17]. Using a linearisation techaique they showed that the rest
state (v,w) = (0,0) is stable in an appropriate Nilbert spacs. For some valswes of
the parameters ¢ and Y they were alse abls to preve the stadility eof the ress
state by censtructing a lyepunev functioa. Further subthresheld results were given
by Schonbex [21].

The primary teshniques weed througheut this paper are Gaspariesn theertems fer
paradolic partial differential eguations., These results are digcwssed ia Sepotion 2.

In Section 2 we also state soms results about solutions of the scalar egustion
(1.4) Ve ™ Vox + £(v)

v(x,0) = o(x) .

These results are proven in (21], and will play a very isportant rele in the proof of
Theorea 1.1, Equetions similar o (1.4) have many applications and have been studied
by a number of people (see [2] for refereaces). R. A, Figher (7] iatreduced equatien
(1.4) with £(v) = v(1 = v) in eoanection with gertain predlems in population
genetics. Other applications ocour in theories ef combustion andéd active tramemission
lines. Threshold results for this scalar equation were given by Arongon and
Weinbdsrger [2) who made the following asswmptions on f£(v):

tec'o,, o) =21 =0, £(0) <0,

(1.5) f(v) €0 4in (0,a), £(v) > 0 in (a,1) for some a @ (0,1), and

1
[ tiwiav >0 .
0
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In their paper, Aronson and Weinberger referred to this as the “heterozygote
inferior" case in connection with the Fisher model for population genetics. They
showed that if the initial datum, ¢(x), is sufficiently small, then
li: vix,t) = 0, while if v¢(x) is sufficiently large on a sufficiently large
iﬁterval, then 1lim v(x,t) =1 for x e R, Here we briefly discuss the proof of the
+00

superthreshold p:rt of their results because it clearly illustrates how comparison
functions are constructed and why one expects equation (1.4), or system (1.1), to
exhibit a threshold phenomenon.

Aronson and Weinberger construct comparison functions qn(x) which are
solutions of the steady state equation

(1.6) qa + f(qn) =0 .

The phase plane configuration of this equation is shown in Figure 1.1.

Figure 1.1
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“ Because of the assumptions on f there exists a unique constant x @ (0,1) such
that fx f(uldu = 0, If n e (x,1) then the trajectory through (n,0) is

. chatacgerized by -%pz + F(q) = F(N). It is easy to show that this trajectory
intersects both the positive and negative p axis. Thus, given n & (X,1), there
exists a bn e R+ and a function qn(x) such that qn(x) is a solution of the

1 steady state equation (1.6) which satisfies

0 = qn(tbn) < qn(x) = g,(0) in (-bn,bn) .

n -1 Y
In fact, one can show that b = 2 [ (2r(n) - 26y} /2dy where Fly) = [ £(udu.
0 0
Aronson and Weinberger then prove the following result.

- £
od ada

- Theorem: Let v(x,t) @ [0,1] be a solution of (1.4) in R x R' where £(v)

satisfies (1.5). If v(x) » qn(x - xo) in (x5 - bn. X, + bn) for gome n & (¥,1)

and for some x,; @ R, then

h lim u(x,t) = 1 .,
tee

In this construction we see that a sufficient condition for the initial datum to be
superthreshold is that it lie above one of the comparison functions qn(x).

ne (x,1). We expect equation (1.4) to exhibit a threshold phenomenon because

comparison functions of arbitrarily small length or height cannot be constructed. ]

L 1P

e

Further results for the scalar equation (1.4) were given by Fife and McLeod :

{6]. Assuming that f(v) satisfies (1.,5) with f£'(1) < 0, they showed that {if b

APt g

¢(x) is superthreshold then the solution will converge uniformly to a traveling wave

»

solution.

. & The proof of Theorem 1.1 is given in Section 3.

-6-
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Section 2. Preliminary Results

The principal tools used in the proof of Theorem (1.1) are presented in this
section. We begin by stating, without proof, some standard comparison theorems for
linear parabolic equations. Proofs of the comparison theorems may be found in
Protter and Weinberger [16]. We then prove a comparison theorem for solutions of a
nonlinear system of equations. Finally, we discuss those results which are needed
about the scalar equation:

(2. 1) Ve T Ve t f(v) .

Throughout this paper we will constantly be comparing solutions of the system (1.1)

to solutions of the scalar equation (2.1).

Comparison Theorems

For T > 0 let 01(t) and uz(t) be continuous functions on [(0,Tl. We
assume that 01(t) is either finite or identically -® and az(t) is either finite
or identically +* on [0,T]. Let

0 = (x,t):a (k) < x ¢ ay(t), 0 ¢t < T}
and let L be the linear operator defined by
Lu = U < . +u .
Assume that in D, u(x,t) is a bounded continuous function with Uyr Uyoer

and u, continuous.

Theorem 2.1: Assume that u(x,t) satisfies the inequalities
(2.2) (a) Lu >0 in D,
(b) u(x,0) >0 in (01(0).02(0)1 .
If 01(t) or az(t) are finite assume that
(c) u(01(t),t) >0 in J0,T) ,
(@) ula(t),e) >0 in fo,T) .
Then u(x,t) >0 in D. If u(x,0) > 0 for some x & (01(0),u2(0)), then

ul{x,t) > 0 in D.

-7-
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‘ Theorem 2.2: Assume that ck(t) is finite for either kX = 1 or 2. Furthermore,
assume that ak(t) e c’([o,-r]), and u(x,t) satisfies the inequalities (2.2a-4)
B with u({x,0) > 0 for some x € (61(0),62(0)). 1t u(ak(t),t) = 0 for some

t e (0,7, then (-1)kux(ak(t),t) < 0.

Theorem 2.3: Assume that u(x,t) satisfies the inequalities (2.2a,b) with

-

u(x,0) > 6 on (31(0),02(0)1. If, for k=1 or 2, ak(t:) is finite, assume that

R Gk(t) ec‘((o,'r)) and (-1)kux(ak(t),t) 0 on (0,T). Then u(x,t) > 0 in D.

3

\ The Scalar Equation
The following result is proven in [22, Corollary 6.4]).

i
. Theorem 2.4: Choose a € (0,-1) and K < % - a, Assume that 4 < 1 - K and

ry > 0. Furthermore, assume that Y(x) satisfies (1.2), and u(x,t) is the
R solution of the equation
- u, = u, + flu) ~K in RX R,
. u(x,0) = ¥(x) in R .

’ _' Then there exist constants ©, r, and T, which depend only on a, K, and 4 such
* that if x5 > 8, then wi{x,t) > d for |x| < ry, t > T. Furthermore, the curve
s(t), given by s(t) = sup{x:v(x,t) = al, is a well defined, continuously

; differentiable function which satisfies

5 (a) s8'(t) is a locally Lipschitz continuous function

:’ ‘3 (B ln s(e) = =

: e) s(t) > % -r for ter" .

"

g i

3 A Comparison Theorem for Systems of Equations

';. Suppose that for T > 0 the functions vg(x,t) and v.l(x,t) satisfy v, (x,t)

’« e Cz(l+ x (0,T)), k = 1,2, and v,(x,t) < vo(x,t) in Y x (0,7, Furthermore,

suppose that Go(x) and a, (x) are smooth functions which satisfy ao(x) <a, (x)

~8-
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in R'. Let wk(x,t), k = 0,1, be solutions of the ordinary differential equations:
e = E(vk - ka) in RY x (o,T) ,
W (x,0) = a (x) in ® .,
Note that wo(x,c) < wylx,t) in RY x (0,T). Let L, be the operator defined by
Lqu = LI W g(u) where g is a bounded, smooth function. Finally, let

(v,w) be the solution of the system of equations

L1v = -
(2.3)

w, = €{v - Yw) in R+ x (0,T) ,

with initial and boundary conditions
(2.3a) (v{x,0),w(x,0)) = (v(x),¥(x)) in R*
v(0,t) = h(t) in (0,T) .
We assume that the functions ¢(x), ¥(x), and h(t) are all continuously
differentiable.
Propogition 2.5: Assume that v1(x,0) € ¢(x) < vo(x,O), v1(0,t) < h(t) < vo(o,t),

and a1(x) € Pix) € ao(x) in r'. Furthermore, assume that

>
Lyvo 2 ¥y 0

+
<
L,'v1 ~, in R x (0,T) .

(2.4)

Then, v (x,t) ¢ v(x,t) € vo(x,t), and w,(x,t) € w(x,t) < wy(x,t) in R® x (0,T).
Proof: Using an iteration scheme, we approximate the solution of (2.3) by a sequence
of functions (vn(x,t),wn(x,t)). we show that for each n » 2,
vy(x,8) € v (x,t) € vy(x,t) and wi(x,t) € w (x,t) € wo(x,t) in R* x (0,7). we
then show that the sequence of functions (vn,wn) converges uniformly on bounded
sets to the solution (v,w).

The functions vn(x,t) and wn(x,t) are defined as follows. Suppose that
have been defined. We then let

for n ?» 2, VoeVareoo,V and  wg W, .00,V

n=1 n-1

vn(x,t) be the solution of the equations:

-9=
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Livy = w4y 40 R' x (0,T) ,

(2.5) vo(x,0) = ¢(x)  in »*,

val(0,t) = h(t) in (0,T) .
We then let w (x,t) be the solution of the equations:
(2.6) Ve = €V =W ) 1n ®*x (0,m) ,

v, (x,0) = ¥(x) in w»*.
We show, using induction, that for n ? 2,
(2.7a) (=) _4(x,t) < (=D (x,t) < (=D _,(x,t)
and,
(2.7b) =DM (x,8) € (=1 (x,8) € (=1 o (x,t) in R x (0,T) .
First, suppose that n = 2, We wish to show that vilx,t) € vy(x,t) < vp(x,t) in
R x (0,T)s This 1s proven by a comparison argument. Note that, by our
assumptions, v,(x,0) € v,(x,0) € v;(x,0) and wv,(0,t) € vy(0,t) <€ v (0,t).
Furthermore, Lyvy < L4V, < Lyvg in R x (0,T). This is because LyVy = =w,, and
we are assuming that -~ < Lyvg and -, > vy > L4y in rR" x (0,T). From
Theorem 2.1 of {2] it follows that v, € v, < vy in R* x (0,1). 1t immediately
follows from (2.6) that w, S w, <w, in R' x (0,m).
Now suppose that, for n ? 2, (2.7a) and (2.7b) hold. If n is even, we
conclude from (2.7b) that
Wo.q(x,t) < wn(x,t) < wn_z(x,t) ‘in R* x (o,T) .
From (2.5) it follows that
Ly(v ) S Lylvoy) € Lyv) in RY x (0,1,

Since v, _4(x,0) = v, 4(x,0) = v (x,0) =¢(x) and v, _,(0,t) = v, ,(0,t) = v (0,t)
= h(t) it follows from Theorem 2.1 of (2] that
(2.8a) Vpa1 (Xet) € v (x,8)) Sv (x,£) in R' x (0,T) .
If n 1is odd, then from (2.7b) and (2.5) it follows that
in ®Y x (0,1,

Ly(vy) < Ly(Vn4y) < Ly(Vpoy)

Since vn(x,O) - vnﬂ(x,O) = vn_1(x,0) = ¢(x) and vn(o,t) - vn”(o,t) = vn_1(0,t)

= h(t) we oonclude that

-10-
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(2.8b) vplx,t) € v (x,t) € v _ tx,t) in B x (0,1 .
Combining (2.8a) and (2.8b) it follows that

0" ) € 0™y ey < =0y _ixt) in #F x (o,m)

n=1
and using (2.6),
=0 ) € ™M Lty < 0™ _Jogt) i RV x0m
This completes the induction argument that (2.7) holds.
We have now shown that
V1 < V3 € oo (v2n+1 € oo (vzn € oo ‘vz < vo
and
W1 <€ Vl3 § seo € w2n+1 € oo ¢ wzn € osee (wz (wo
in R x (0,T). Hence, there exist pairs of functions (¥,#W) and (v,w) such
that (v ,w;) converges to (V,W) and (vy,q/Wan,q) cOnverges to (v,w)
uniformly on bounded sets of R' x (0,T) as n *+ . Clearly, v, ¢ v < Voo
vy € v < Vgr ¥y S W Swy and wy € w < wy in Rt % (0,7). To complete the proof of
(v, 2 (v,w) in R x (0,T).

the Proposition we show that (v,w)

Let G(x,£,t,T) be the Green's function for the dmain R’ x r*. That is,

2
- X
Gix,6,6,T) = K(x = E,6 = t) = K(x + §,t = T) where K(x,t) = —yt— e 9%, Then,
2 2 2
for n?1,
o t
van(xit) = [ GOx,E,8,TI0(E)dE + [ B(TIG(x,0,¢,T)ar
0 0

t L]
(2.9) +[ ] etx,&,t, ) 0gtv, (E,1)) = w, (€, ))&kaT ,

0 0 n 2n-1

-£Yt ft e—SY“
0

-€
wonlxst) = e S Ep0n) + ce v, (x,nan .

2

Passing to the limit in (2.9) it follows that

«41’&’“ ‘




e A

Vo, t) = [ Gix,E,t,TI0(E)AE +
0

t
f n(TIG, (x,0,¢,7)AT
0

c [_J
+ [ | G(x,&,t,7)g(v(E,T)) - wi(E,T)]dEdT ,
00

€Yt
Ty

wix,t) = e

t
(x) + €o~STE [ oY

v(x,n)dh .
0

Hence (V,W), (V,,@,), (V, ., %, ), and (¥,,W%.) are all continuous functions and i
(V,w) solves the system of equations:
L,(v) = —w
(2.10a) - _ - +
w, = €(v-7Yw) in R X (0,T) ,
(¥(x,0),%(x,0)) = (p(x),¥(x)) in =,
v(0,t) = h(t) in (o0,T) .

Similarly, (V,w) solves the equations:

L& = -
(2.10b)

Gt = €(v-Ye) in R x (0,T) ,

(¥(x,0),w(x,0)) = (#(x),¥(x)) 4in R ,

v(0,t) = h(t) in (0,T) .

Let z(x,t) = ¥(x,t) - :I(X,t) and u(x,t) = w(x,t) = ;(x,t)- 'Subtracting’
(2.10b) from (2.10a) we conclude that (z,y) 1is a solution of the equations:
{ z, =z, + glV) - g(V) +y,

Y = €lz =~ Yy) in ®* x (0,7 ,

(z(x,0),y(x,0)) = (0,0) in R,
z(0,t) = O in (0,T) .
From the mean value theorem and our assumptions on g, there exists a bounded
function B(x,t) such that g(¥) - g(a) = B(x,t)(v - u). Hence, (z,y) solves the

linear system of equations:

-12-




z =2z  +B(x,t)z+y
(2.11) £ oxx

y, = €z = ¥y) in ®" x (0,m ,

(z(x,0),y(x,0)) = (0,0) in R',

z(0,t) =0 in (0,T) .
We wish to show that (z,y) = (0,0) in R" x (0,T). This would imply that
(v, w) = (v,¥).

Note that (z,y) can be written implicitly as a solution of the integral

equations:

t [ )
(2.11a) zix,t) = [ [ 6(x,E,t,T)(B(E,D2(E,T) + y(E,T))dkaT ,

0 0

-evt (5 ven
(2.11b) yix,t) = €e [ e z(x,man .
0

Let

p(t) = sup {lz(x,t)] + {yi(x,t)1} ,

+
%R

and suppose that |B(x,t)| < B in R' x (0,T). Taking B > 1 it follows from

(2.11a) that

t
(2.12a) lz(x,t)] <B [ p(T)AT .
0

From (2.11b) we conclude that

t
(2.12b) ly(x,t)l € € [ p(r)ar .
0

Adding (2.12a) and (2.12b) we obtain

-13-
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il
{
"4
- t
: p(t) € (B + €) [ p(r)ar in (0,7) .
< 0
From Gronwall's inequality we now obtain that p{(t) =0 4in (0,T). Hence
; {z,y) = (0,0) and (V,W) 2 (¥,%) in R" x (0,T). It now follows from (2.10a)
; that (V,w) is a solution of the system (2.3). However, an argument similar to the
| one just given shows that the solution to system (2.3) is unique, and, therefore,
(v,w) = (¥,@) dn = x (0,T).
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Section 3. Proof of Theorem 1.1

Throughout this section we assume that the initial datum, ¢(x), satisfies the
assumptions (1.2), and there exists a unique classical solution of the Cauchy problem
(1.1) in R x R*. Because of the assumption (1.2), the pure initial value problem

(1.1) is equivalent to the initial-boundary value problem:

Ve T Vex + £f(v) -~ w

(3.1) +

w, = e(v ~ Yw) in R+ X R ,

(v(x,0),w(x,0)) = (p(x),0) in R*,
v, (0,£) = 0 in ®*.
Throughout the rest of this paper we only consider solutions of this quarter plane
problem.
Recall that ¢(x) is said to be superthreshold if 1lim s(t) = ® yhere
0
s(t) = sup{x:v(x,t) = a}. 1In the introduction we mention:d that it would be
necessary to make some assumptions on the function s{t). We now describe these

assumptions.

Assumptions in s(t).

If s(t) 1is continuous in the interval (to,t1), then A = 1im s(t)
exists. Furthermore, there exist positive constants M and § s:c: that for
ty -8 <t <ty either

(a) s(t) ¢ Mt - ty) + X,
(3.2)

or (b} s(t) > M(t - t1) + X .

Note that these conditions are satisfied if s(t) does not approach A
tangentially from both directions as t * ty. In particular, they are satisfied if

s({t) does not change directions infinitely often in every neighborhood of t = ty.

-G

-
WD e, T G LT R




Theorem 3.1: Fix a e (0.%) and Y > 0. There exist positive constants §, 6, Tys

Theorem 3.2: Assume that (v,w) is a solution of the initial-boundary value problem

The principal tools used in the proof of Theorem 1.1 are the comparison

theorems. We construct two, one-parameter families of comparison functions G (x)

X
and on(x). defined for xq > 9 and x > 0, which serve, respectively, as a lower
bound for v and an upper bound for w. The proof of Theorem 1.1 is then split into

two parts. We first prove the following.

T,, and X1 with the following properties. Assume that € € (0,5) and v(x)

satisfies the assumptions (1.2) with x4 > 0. PFurthermore, assume that

(a)  e(x) > Gxo(x) in [0,xo) N
(3.32) (b) |e(x)) € 'G”o(x)l in  (x,,™ ,
(c) |w(x,0)| € on(x) in (0,*) .
Then there exists T € (T,,T,) such that s(T) = x; + 1, s(t) > x, = X1 in
fo,7), and
(a) v(x,T) > Gx°+1(x) in [0,xo + 1),
(3.3b) (b) |V(XUT)| < ‘Gxo+1(X)' in [xo +1,* ,
(c) fwix,T)})| < H in [0, .

xoﬂ(x)

Note that if (v(x,0),w(x,0)) satisfies (3.3a) then we can keep repeating this
result to oonclude that s(t) is ocontinuously moving to the right by one unit.
Hence, some sort of signal is being propagated.

To complete the proof of Theorem 1,1 we prove the following:

(3.1). The constants 8§ and © obtained in Theorem 3.1 can be chosen so that
if v(x) satisfies (1.2) with Xy > 0, and ¢t e (0,8), then there exists a
constant T, such that for A= 8(Tq),

(a) vix,Ty) > G, (x) in [0,}) ,

(3.4) (b) Jvix, Ty} € IG, (x)] in [A,= ,

(c) |w(x,'r°)| < H)‘(x) in f[0,*) .




This result completes the proof of Theorem 1.1 because once (3.4) 1is satisfied

we can apply Theorem 3.1 to conclude that ¢(x) 1is superthreshold.

Note that we wish to obtain a lower bound for v and an upper bound for w. To
obtain these bounds we use repeated applications of the followlng estimates.
Since w(x,t) satisfies the ordinary differential equation W, = €(v - Yw), it

can be written explicitly in terms of v as:

4
1 t
! -€ ~€ €
~ wix,t) = e Ytw(x,O) + Ee e f e an(x,n)dn .
o 0
o Assuming that w(x,0) € on(x) in RY it follows that
t
(3.5) latx,£)] < B () + € [ lvtx,mian in m* x w*,
0
and, therefore,
L + +
(3.6) lwix,t)| < on(x) + eVt in R XR .
$ . Using these estimates we are able to control the size of w by choosing € small.
. Once we have an upper bound on w, we use the comparison theorems described in
Section 2 to obtain lower bounds on v.
: In the estimate (3.6), w(x,t) increases linearly in time. We shall see that
!-1
‘Qf this provides a sufficient bound for x < s(t). However, we shall need that the
";' functions v and w decay exponentially fast to zero as x * ®, This shall be
iy proven using Proposition 2.5, and taking advantage of the fact that for x > s(t),
"
i - (v,w) is a solution of the linear system of equations:
i Ve = Ve =V = W
‘ Wy = E(v - YW) .
'.
¢h .

. In what follows the reader should constantly refer to Figure 3.1 which shows

that the oomparison functions G*O(X) and on(x) involve many constants and
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Figure 3.1. The Comparison Functions Gx (x) and Hx (x).
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functions. We present the various properties of these constants and functions

whenever they are needed in the proof of Theorem 1.1. To emphasize that the

comparison functions are well defined and depend only on the parameters a and Y

N . we also present, without motivation, their definitions in Appendix A.

We mentioned that the proof of Theorem 1.1 is split into two parts. We first

prove Theorem 3.1. Until otherwise stated we assume that (3.3a) is satisfied. The

<
L 3 proof of Theorem 3.1 consists of a number of steps. In (A) we define Gxo(x) and
>N on(x) for x > xq, and show that |v(x,T)] > Gxoﬂ(x) and |w(x,T)] < onﬂ(x)
H for x » xq + 1. In (B} we define on(x) for x & [0,xp), and show that
r‘i w(x,T} < H, +1{x) for x e [0,x0 + 1), In (C) we define the comparison function
0

. Gx (x) for x e (O,xol, and show that v{x,T) > Gx +1(x) for x e (O,x0 + 1) In
N 0 0

(D) and (E) we prove there exist constants 31, Ty, and T, which depend only on

- the parameters a and Y such that:

(a) s(T) is a well defined, oontinuous function satisfying
s{T) = xg + 1, for some T @ (T1,T2) '
(3.7) {b) s{t) > x; - X1 for t e (0,T). Furthermore, v > a for
xq = A1 <x <s(t), 0<t<rT,
{c) s(t) < x5 +1 for t<T.

In (A), (B), and (C) we asgsume that (3.7) is valid. This is justified because

the proof of (3.7), given in (D) and (E), does not depend on the results proven in
(A}, (B) or {C). The reason that the proof of Theorem 3.1 is presented in this order
is to better motivate why the comparison functions Gxo(x) and on(x) are defined
as they are. For a more rigorous presentation of the proof of Theorem 3.1, it is
suggested that the reader begin with Appendix A where the comparison functions are
formally defined. He should then read (D) and (E), and conclude with (A), (B), and

(C)+ The proof of Theorem 3.2 is given in (F).

T . o, o< oavi. -




| (A) G, (x) and H_ (x) for x > x
] Sxg n Xq "
' 2
'% (xo-x) n '—: (xo-x)
~ For x > xg, let Gxo(x) = -ae and on(x) =g e where
3.8 = mind
: (3.8) m = 7 min(3 - a,a) .

Recall that we are assuming that (3.7) holds. In particular, s(T) = xy + 1 for

some T > 0, and s(t) < x + 1 for t < T. Here we show that the constant § can

be chosen so that if ¢ e (0,8), then, for x ? Xy + 1,

cadd A

~ Ivix,m) | < |G"o“(x)' '
- and
- x| < By gt

This is done by applying Proposition 2.5.

£§ (x,+1-x) £§ (xq +1-x)
Let vj(x,t) = ae and v, (x,t) = -ae in

Ixo + 1,2) x [0,T)]. Note that v(xo +1,t) <cam= vo(xo +1,t) for t e (0,T) .
. This is because s(t) = sup{x:v(x,t) = a} while T = inf{t:s(t) = x, + 1}.
Furthermore, v(xo + 1,t) > ~-a = v,(x0 +1,t) for t e (0,T). This follows from the

following comparison argument which shows that v(x,t) > -a for x > s(t),

".‘.. te (0,T). WNote that v(s(t),t) =a > -a for t > 0, and v(x,0) > Gxo(x) > -a
i for x > %9+ In order to apply Theorem 2.1 to conclude that v > -a for x > s(t),
Q, t e (0,7) we must show that Lv > L(-a). Note that Lv = -w, while L(-a) = -a,

From (3.6) it follows that for x > s(t), t e (0,T),

lwix,t)] < -;-‘ + EVT <m

s m m
: € — —n
y if < T So one condition we must impose on & 1is that § ¢ VT Since m < a

. 3 the result follows.

=20~




R . N

Let wk(x,t), k = 0,1, be the solutions of the equations:
~ +
) "kt - e(vk - ‘ka) in (Xo +1,%) xR ,
n ',—g (x°+1-x)
wy (x,0) = 3 in (xy + 1,%) .
' Note that v,(x,0) € v(x,0) € vg(x,0) and w4(x,0) < w(x,0) < wo(x,O) in
L
} {xg + 1,%). In order to apply Proposition 2.5 to conclude that
N /- -
< —g— (x°+1-x) o % (x°+1-x)
* 2 Iv(xo,t)l € ae and |w(x,t)| < e in  (xy + 1,%) x (0,T), we
L~
7 must show that
! Lvg > -4
~
and
Lvy € -wy in (x5 + 1,%} X (0,T) .
; Recall that L is the operator defined by Lv v, - v =~ v. Note that
) 2 e
a —22- (x°+1-x) a -—:- (x°+1-x)
N Lvo = -2- e and I.\v1 = - 5 e +« On the other hand, it follows
. from (3.5) that, in (x° + 1,»2) x (0,T),
e T
. g, )1 < By () + eg v (x,m) [an
. 2
N n -—: (xo-x) T -—g (x0+1-—x)
€ =e + € ae an
- 2
o 0
3 i 2
& ~— (%,.=x%) —_ (x, +1-x)
e . e 2 0 + eap 1]
X 2 °
V2 V2
a - —22- -—-22- (x°+1-x)
= [- e + ea'r]e .
2
Therefore, if € is chosen so that
2
m 2
(3.9 € < 5o [1-e “],
then
) /2
m —:. (x°+1-x)
(3.10) lwo(x,t)l < ze = onﬂ(x) .




s

I

-

{

-

Since m < a we oconclude that

Lv, < “wy in (x5 + 1,%) x (0,T) .

A similar computation shows that if (3.9) is satisfied, then Lv, > =w; in
(xo + 1,*) x (0,T). We can therefore apply Proposition 2.5 to conclude that
Iv(x, )| € vy(x,T) = Gxoﬂ(x)

and
lwix,T)| € wo(x,T) for x ? x5 + 1 .

From (3.10) it follows that [w(x,T)| € H, #{x) for x > xq + 1,
0

(B) E“O for x € (o,xo)

m m
For x @ (0,x,) set on(x) - m (xo-x) *5. The constants X1, Xz,

and Xa will be defined later, in C, when we discuss Gxo(x) for x e (0,xy). For now
we just assume that they are well defined positive constants which d not depend on
the parameter €. Here we show that if € is sufficiently small, then w(x,T) € Hx°+1(x)
for x @ (o,xo + 1). In fact, we prove a stronger result which is needed later.
Consider the line £(t) = X5 + t/T. We show that if € is sufficiently small,

then w(x,t) € H for (x,t) € (0,x, + 1) x (0,T). Since L(T) = Xy + 1 this

te) (x)
implies the desired result.

First suppose that x & (O,Xo). Assume that

(3.11) € <

m
z»(x1 + xz + xa)v-r
Then, from (3.6), it follows that

Jwix,t)| < Hyy (x) + Ve

<

3l

m m m
—_———— (X, = X) + = 4+ —————————
2(X1 + xz + A3) 0 2 2()‘1 + A2 + xs)

m m

= (xn + /T = x) + =
0

2()‘1 + Az + AJ) 2
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2
n 3 (xo-x)
- For x & (x5,%x5 + 1), on(x) =3e . Assume that
2
1 { m m m -3 x}
(3.12) € ¢ min {55y 57T (1 = x) += =T ¢ .
A +
V'r2 0<x€ 1 2( .t Az A3) 2 2
Then, from (3.6),
lwix, e}l < H, (x) + eve
0
1
m t m
e o (x_+ = = x) +3
S 1y Iy
2( 1 + 2 + Xa 0 T 2
- -
Hl(t)(x) .
(c) gx#) for x € [0,x,)
3 We now define the comparison function Gx (x) for x e (O,xo), and show that
i °
if € is sufficiently small, then v(x,T) > G, +{x)} for xe ((),x0 +1). Let
- ° o
4
* H - < <
. } a for Xy xo 1 x xo
- | -
g,(x = x5) for x, : x, -/\2 <x<x1
(3.13) Gy (%) =
192(x-x2) for x3:x2-13<x<x2
oy 93(x,x3) for 0 € x € Xq o
:‘ The constant X1 is determined later in (D). It shall be chosen so that (3.7) is
.i'
o satisfied. The oonstants .\2, X3 and functions g,(x), gz(x). 93(x,x3) are defined
1
& as follows.
P
1 1
' § :\3, gz(x). Recall from (3.8) that m = p min(-z- a,a). Set
3|
. ‘ B (1 - (a +m))
:’l‘: (3.14) A, = logf2 - ].
* For x @& [-X],o], define g,(x) to be the solution of the differential equation
v'...
-23-
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93 ~gp=m-1,
93(0) = 0, g,(=2,) = a .

Note that

(3.15) gy(x) = [-%—:-E-Eil](ex +e*) +1-m for x @& [-X3,0] .
3

‘. e +e

Using this formula and (3.14), one easily verifies that

(a) gj(x) >0 for xe [-As,o) '

g (3.16) (b) 1 -2m<« 92(0) <1 -m,
1 hl
. (c) qi(-la) >3 .
]
' Let
' (3.17) a = gy(0) .

12, 91(x)= Recall, from (3.7), that we are assuming that there exist constants

Ty and T, such that s(T) = x; + 1 for some T & (T¢,Ty). Let

4 X 2 ?+'1'1
E - 2-1-(d+ml['1'1 Ja-w,
i and
v -
- (3.18) A, =%, 423 .
- Note that A, > '\z > 1, Let
i d for 0 € x € Xa
’li (3.19) gqlx) =
S d -a 2
N = = ‘ *
X a-| 2 Tex A3) for A3 < x Az
X 2
o The important properties of g,(x) are:

(a) g4(0) =4,
(b) gj(0) =0,
(3.20) (c) 91(l2) =a,
() gj(x) €0 for xe (o,xz) P

(e} g7 + ;l q; >m+d-1 for xe (xg,xz) .
1
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| 1

Property (a) follows because for x e (X3,X2),

(x = X)) T, + (x =1))
R R L | (i 1 SN Y Bl 1
1 ) 1 x 1
2 2
4ot *T
> o[22 ]=m+a-1.
Ty

2

g3(x,x3): For x e [0,x3], define g3(x,x3) to be the golution of the

differential equation:
m
95_93---2.(,(-,(3)4,,“'

gg(o,xa) =0, gylxy,xy) = a

Note that
-x
a+m-Je ’ x -x m =X m
(3.21) 93(x,x3)- —_—x_T—[e + e ]+Ee +E(x-x3)-m.
3 3
e +e

The following properties follow from this formula,

[ ] 1
(a) s g,(x,x3)|x,x3 < 7

Sm

Sm

2

(3.,22)
A X
(b) Choose X4 80 that e = =~ e >1 and § >0, For t > 0 1let
9
21(c) = x4 + 8t. Then, * 93(x,l(t)) <0 for x e [0,11(t)1.
t € R*, This is because,
2(t) ~£(t) L(t) ~L(t)
] ale + e ) + mle - e - 1) x ~-X
3% 95 (x.t(e)) = 6] TR T Jte® + &™) -
(e +e )
A «A
. _6[gisl(t’ AL D D] s o
(el(t) + e-!(t))z
<0 .
265
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We now show that if € is sufficiently small, then v(x,T) > Gxo+1(x) for
x @ (0,xq + 1). We actually prove a little more. For t € {0,T)}, let
2t) = x, + % and Y(t) = inf{2(t),s(t)}. We show using the comparison theorems
that G, . .(x) ¢ vix,t) for (x,t) e G= {tx,t)ix @ fo,v(t)), t @ (0,T)}. Since
Y(T) = a(T) this certainly implies the desired result.
The proof is by contradiction. Suppose there exists some point p = (x,t) @ G
such that c‘(;)n’() = v(X,E). From (3.7b) it follows that p can be chosen so that
Cy(g)(X) € vix,t) for (x,t) @ G, t ¢t
In order to use a comparison argument to obtain a contradiction it is necessary
to show that Lv > LGl(t)(x) in G. To estimate Lv we use the results of (B)

where it was shown that w(x,t) € Hl(t)(x) for x e (0,%(t)), t @ (0,T). Therefore,

m t
wix,t) < Hl(t)(x) - ETX:-:—X;_T_X;T (x3 t - x) +m

m t t
< 3 (x - (x3 + ?)) +m for 0 < x < xg+ T

(3.23)

t
m for x5 + T € x € (L) .
Here we used that A1 + Xz + Xa > 1. This is justified because Xz > 1 (see the
remarks following (3.18)).

We first show that it is impossible for x @ (0,%y + %). If this were the case,

then, since Gl(t)(x) <¢a for xe (O,x3 + %), there exists a constant B8 such

that vi{x,t) < a and Gl(c)‘”’ ¢ a in the rectangle R = (x - B,x + B) x (€ - B8,£).
However, G‘(t)(x) ¢ v(x,t) on the left, right, and hottom sides of R. wWe show
that LG!(:)(”) ¢ Lv in R so that we can apply Theorem 2.1 to obtain the desired

t t
contradiction. WNote that, in R, Gl(t)(x) - 93(* - (x3 + ;),x3 + ;), and therefore,

2
] [4 [ 4 9 t t
LGl(t)(X) i 1y 93(x - (x3 + % + T) - axz gl(x - (x3 + T),x3 + ;)

t t
;),x + =) .

*gylx = (xy ¢ I

S T T TR
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From (3.22b) it follows that

2

9 t t t
LGz(t)(x) € = —> 93(x - (x, + =),x, + ;) + 93(x - (x3 + ;),x

t
N 3t + 7
x

-2 x - (x +§))-m.

2 3

On the other hand, in R, v < a and, therefore, Lv = -w, From (3.23) it follows

that LGz(t)(x) <Lv in R. ) )
A similar argument shows that it is impossible for x @ (x3 + %,xz + %) or
xe (x2 + %,x1 + %). If this were the case, then, as before, there exists a constant
B8 such that Gl(c)(X) >a and v{x,t) > a in the rectangle R defined by
R= (%X~ B,x+B) x (t ~B,E). Then Gl(t)(X) < v(x,t) on the left, right, and
bottom sides of R. We show that lsl(t)(X) ¢ Lv in R so that we can apply
Theorem 2.1 to obtain the desired contradiction.

- t t t
First suppose that x € (x; + 7%, + T). Then G!(t)‘x) = gy(x = (x3 + 5)).

From (3.16a) it follows that
=1 - 2y D oanty - t - t
LGl(t)(X) =-7 qi(x (x3 + T)) 92(x (x3 + T)) + qz(x (x3 + T))

< -q;(x - (x3 + %)) + gz(x - (x3 + %))

=1 -m.

On the other hand, from (3.23), w(x,t) <m in R. Therefore, Lv=1~w> 1 -m

x) in R,

L +E), then G,, (x) = g.(x - (x, + £)) in R. From (3.20)
T T L) 1 2 T

> LGE(:)(

If x@e (x, +

it follows that
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1 t t t
tﬁl(t)(x) -3 q;(x - (x2 +;)) - g';(x - (xz +5)) + q'(x - (x2 +-T-))

1 t t t
< -;: q;(x - (x2 +;)) - q“'(x - (x2 +-,1:)) #91(:& - (x2 +;))

€1 =-(m+4q) +4

-1 -m.
However, from 3.23, w(x,t) <m in R. Therefore, Lv=1=-w)> 1 -m > I.G“t)(x)
in R.
Similarly X * 0. In this case we can argue as before chosing a rectangle of
the form R = (0,8) x (t - 8,8).
It remains to show that it is impossible for x = x + _%, for k= 1, 2, or

3., From Theorem 2.2 it follows that this is impossible if

3 z - [ t. + -
RO % * B ) S Tx Gy (g +P ) for k= 1,2,3 .

Here g'(x") denotes the left sided derivative of g at x, while g'(x’) denotes

the right aided derivative.

If X=x +§, then, from (3.16c) and (3.22a),
3 _ ] - - 1
T ) TR e <5
while,
3 o+ bl
KGI-(E)“‘ ) = qi(‘xa) >3 .
It x=x «1-g then
2 Tl »
3 ——
F;Gl(eT (x ) = 95(0) =0 ,
while,
)
33 Co(p) (%) = 9j(0) =0 .
Finally, if X = x, +%, then, from (3.204), .

3 == .
W Omx ) =gy <o,

=2 R
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while G!(t)(x) = a for x € (x1 + T,xo + T) and, therefore,

) -+
EGl(E)(x ) =0,

(D) The Curve s(t) = A Formal Presentation

we now show that s(t) is a well defined continuous function satisfying

s(T) = x4 + 1 for some time T. We also verify (3.7). The preof involves

comparing v(x,t) to solutions of scalar equations. In order to motivate the

comparison functions we first present a formal proof that s(T) = x5 + 1 for some

time T. In this formal proof we assume that s(t) is a well defined, ocontinuous

function, and the comparison theorems given in Section 2 are valid when the
operator L is replaced by the operator 1L, defined by
Lgu 2 u, = u,, = £{u) .

Note that since £ is discontinuous the comparison theorems are not really valid.

By making these assumptions, however, we are able to present the main ideas of the

proof while avoiding the difficulties due to the discontinuity of f£. After the

formal proof we present a rigorous, analytic proof in (E).

From Theorem 2,4 we conclude that there exist constants C, and T2 which

depend only on the parameter a and have the following properties.
Suppose that A1 > Cqe and u{x,t) 1is the solution of the equation:

Uy = Uy + £{u) -2m in (xz,') x r* .

(3.24)
ux(xz,t) =0 in Rr' .

Recall that X, was defined in (3.13) as Xy = Xg = (X1 + Xz). For initial

conditions we take u(x,0) = Y({x) where, for now, ¥(x) is any function, defined

tor x ? X5, which satisfies
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| (1) ¥(x) e (-a,t - 2m) for x ? x, ,

h (11) ¥x) > a for x @ (xy,x5 = V) ,

{3.25) (111) ¥(x, - 1) =a,
(1v) v e x|,
(v} ¥'(x) <0 for x> xy

3; Then, the curve 0(t) given by o(t) = sup{x:u(x,t) = a} is a well defined

Jj function. Furthermore,
4 sty e c'(RY), o(t) > x, +1 in B,
B (3:26) lim o(t) = +, and O(T,) > xy + 1

: e ' S

- We show, using a comparison argument, that v(x,t) ? u(x,t) in the set

G= ltx,t)ix > x), t e (0,7,)}. This will imply that s(t) > o(t) in (0,T,), and

v therefore, 8(T,) > x; + 1. We then let T = inf{t:s(T) = a}.

Y In order to apply the comparison theorems to conclude that v > u in G we

must show that:

. (a} v(x,0) > u(x,0) for x> x , .
! (3.27) {b) Lqv > L in G,

“ (e) vixy,t) > ulx,,t) for te (0,T,) .

.: Note that since v(x,0) = ¢(x) satisfies (3.3a), one can certainly find a
i function ¥(x) which satisfies (3.25) and (3.27a).

Since L.v = -w and Liju = -2m, proving (3.27b) is equivalent to showing
that w(x,t) < 2m 4in G. This was proven in (3.23).

It remains to verify (3.27c). We show that u(xz,t) St~-~2m < v(xz,t) for
te (0,1‘2) « The first inequality follows from a simple application of Theorem 2.3
which shows that u{x,t) € ¥ - 2m in G. This is because u(x,0) < 1 = 2m for
x 2 %y, ulx,,t) =0, and Lju = =2m = Ly{1 -~ 2m) in G.

To complete our formal proof that s(T) = xy + 1 for some T it remains to show

that v(xz,t) >1~2m for te (0,T,). This is done by showing, via a comparison
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argument, that v{x,t) > h(x) in rt x (o,rz) for some continuous function h(x)

satisfying h(xy;) > 1 - 2n. The comparison function h(x) is defined as follows.
Let g{x) be the solution of the equations:

+

g" -g=nm in R

g(0) = a, gq'(0) = % .

Note that
8+III-1/2 x -x
(3.28) gtx) = [ 2 ](e ~e ) +(a+me®-nm.
One easily verifies that g'(x) < 0 in R' ana 1lim g(x) = -, Define C, by

b Sand
g{C,) = -a. Note that Cqy depends only on the parameter a. Assume that
(3.29) A1 >Cy .

Define h(x) by

Gxo(x) for 0 € x < xy

(3.30) h(x) = gy(x,y = x) for %y € x< x, + x3
gix = (xy + AJ)) for x, + AJ <X o
The important properties of h(x) are:
{a) h(x) € Gy, in g,
(b} h(x,) = Gxo(xz) > 1 =2m ,
(3.31) (¢) Lyh < Lyv in G wherever Lsh is defined ,
{d) h(x) is a smooth function except at x = xy and
X = x, + xa where h*'(x”) < h'(x*) .
(3.31a) is true because
Gxo(x) for 0 € x < X
ga(xy - x) < d =G, (x) for x5 € x ¢ x, + X3 ,
hix) = 0
gi{x - (x2 + 13)) < ac¢t Gxo(x) for xg + Aa < x < Xy o
gi{x = (xy + X3)) < -a < Gxo(x) for x; < x .
(3.31b) is true because of (3.16b). (3.31c) is true because
% (x - x3) -m for xé@ (0,x3)
Lsh =

~m for x> Xy 4

while Lyv = =w, where w(x,t) satisfies (3.23). Finally, (3.31d) is true
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(sew (3.228)), while h'(x}) = gj(-A)) > 3 (see

1 while

2'

- 1
because h'(x3) = gjlx3,x3) ¢ 3
(3.16¢)). On the other hand, h'((xy + 1,)7) = =gj(=A,) < -
+ 1
R'((xy + A7) = g'(0) = ~ 2,
We now prove that vix,t) > hi(x) in rt x (0,T,)« If this were not the case
then, since h(x) < v(x,0) in R* and lim h(x) = =», there must exist some

x".
(X,€) such that h(x) = v(%,E) and h(x) < v(x,t) for t < €. From (3.31d)

point
it follows that X # xy and ¥ # x, + Aa. Now suppose that X # 0 and h(x)

= v(%,E) < a (> a). Then there must exist a positive constant 8 such that h < a
and v ¢ a (> a) in the rectangle R= (X - 8,x + 8) * (¢ =~ B,t). Howaver, h < v
on the bottom, left, and right hand sides of R. Since in R, h(x) and v(x,t)
are solutions of linear differential equations, we conclude from (3.31¢c) and
Theorem 2.1 that this is impossible. A similar argument shows that it is impossible

for x = 0,

(E) The Curve s(t) - A Rigorous Presentation

We now give a rigorous proof that s(t) 4{s a well defined continuous function

such that s(T) = Xg + 1 for some time T. We also show that (3.7) holds. The

proof is broken up into a few lemmas. In what follows we shall use the constant

T, which was defined in (D).

Lemms 3.3: Let D = (x,,™) % (0,Tp), I, = {x > Xy:vix,t) = a} and

1= {(x,t) e P:x @ It}. Then It is nonempty for each t and, therefore, s(t) is

a well defined function.
Proof: Recall the function h(x) defined in (D). A rigorous proof was given in (D)
that v(x,t) > h(x) in D. Prom this it follows that vixy,t) > hixy) = d.

Furthermore, since h(x, + )‘3) = a it followa that s{t) » x, + A: whenever s(t)

is defined.

We now wish to find an upper bound in v(x,t) and s(t). This is done using a

comparison argument. Recall that w(x,t) <m in D. This was proven in (3.23), It

=32
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is therefore natural to choose a oomparison function, =z(x,t), which is a solution
M ' of the differential equation
(3.32) z, 2z, +£(z) +m in D,
z (x;,t) = 0 for t >0 .
1 We must choose z(x,0) so that z(x,0) > v(x,0) for x > x,+ Since |v(x,0)] < Vv
. £§ (xo-x)
] for x € [x,,x3] and |vi(x,0)] < IGxo(x)l = ae for x > x5, we let
? z(x,0) = E(x) where £(x) in a smooth function which satisfies
N (a) &(x) e (v,2v) for x; < x € x ,
i (b) E'°(x) <0 for x> x5 ,
o (3.33) £§ (xg+ Yy =x) ;
) (e) E&E(x) = ae for x> %y + 2.
- (@ & ec’ix,™ .
A From Theorem 2.4 it follows that there exists a constant Co such that if
Xy ~ X5 > Cq, then the curve 0J(t), given by z(d(t);t) = a, 0(0) = X + % is a
& - well defined, smooth function which satisfies 1lim O(t) = ., In order to guarantee
» 0
. that Xy = Xy > C0 we assume that X1 > Co- Nzte that the constant Co depends
; only on the parameters a and Y. We now show that v(x,t) < z(x,t) in 0. This
: will complete the proof of the lemma. It will also follow that s(t) < a(t) in (0,T,).
] ; Suppose it were not true that v < z in D. Let tq = inflt:vix,t) > z(x,t)

for some x ? xz). First suppose that there exists y > x, such that
viy,ty) = z{y,ty) and vi(x,t) < z(x,t) in [x,,2) % (0,ty). Since

vi(x,0) < z(x,0) it follows that ty > 0. If v(y,ty) < a there must be a

rectangle R = (y - 8,y + B) x (t1 - B,t1) such that v <a and z < a in R,
Since v < z on the left, right, and bottom sides of R, and Iv = -w < m = Lz
in R we obtain, from Theorem 2.1, the desired ocontradiction. A similar argument
shows that it is impossible for v(y,t,) > a.

Now suppose that v(y,t,) = z(y.t1) = a; that s, y = 0(t1). Since vwv{x,t) <

z(x,t) for t < tye it follows that s(t) < dg(t) for ¢t < t4+ Therefore, v < a
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for x > d(t), t e (0,t1). In this region, v and 2z are both solutions of linear
differential equations with Lv < Lz. It now follows from Theorem 2.3 that v, (y,t,)
< zx(y,t1). Since v and z are both continuously differentiable functions this
implies that v(x,ty) > z(x,t,) for some x < x,. This is a contradiction.

Finally suppose there exists a sequence of points (yk'tk) such that

viyeety) ? zlygot,) for each k, ¢t + ty, and y, * = ag k * *. Since
v{o(t),t) < z{o(t),t) = a for t e (0,t,) there must exist a positive constant 8
such that v(0(t),t) < z(a(t),t) = a for t e (0,ty + B)., We also have that

v(x,0) > z(x,0) for x > d(0), and Lv ¢ Lz for x > d(t), t e (0,ty + 8), From

Theorem 2.1 it now follows that v < z for x > o(t), t e (0,ty + B). This

contradiction completes the proof of the Lemma.

lemma 3.4: There exists a constant Ty which depends only on the parameters a

and Y, such that s(t) < Xy +1 for te (0,Ty).
Proof: Recall the functions z(x,t) and 0(t) defined in the previous lemma. It
was shown that v{(x,t) < z(x,t) in D and s(t) < o(t) in (0,T,). We show that

there exists a constant T4 such that 0o(t) < Xy + 1 for te (0,T,). Note that

i > A

z(x,t) and ¢(t) depend on Xy as well as the parameters a and Y. We must
choose T, 8o that it depends only on the parameters a and Y. To d this we
construct the following comparison function.
Let z,(x,t) be the solution of the differential equation
(3.34) Zyp ™ Zyge * £(zq) +m in RXR',
z4(x,0) = 51(x) in R,

where E‘(x) satisfies:

(a) 51(x) e c(m) ,
{b) Ei(x) > 2v for x € (-a'%) .
(3.35)
(c) E;(x) <0 for x e R
23, .
(d) 51(x) = ae for FEx<m.
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Define oi(t) by z1(o1(t),t) = a, 01(0) = Xge We would like to apply Theorem
o 2.4 to conclude that 01(t) is a well defined, smooth function such that
liﬁ o'(t) = =, However, z4(x,0) # z4(-x,0), and, therefore, the assumption (1.2¢c)
: 1: not satisfied. Instead, we are asasuming that z,x(x,n) <0 in R. One finds,
‘ however, that proof of Theorem 2.4 is easier with this assumption. The reason being
; that if z1x(x,0) < 0 then there is a unigue curve, 01(t), such that
4 z1(a1(t),t) = a, while if (1.2c) holds then there are two curves, 61(t) and
. 3 -01(t), such that 21(61(t),t) = a., We assume, therefore, that 01(t) is well
N defined, and 12 g (t) ==, Let T, = inf{tsc1(t) = 1}. Note that T, depends
‘: only on the pa:ameters a and Y.
i ‘
3 We now prove that O(t) < g (t) + x, for t & (0,Ty). This is done by showing
1 that z(x,t) < z4({x = xo,t) in D, Set zz(x,t) = z.(x - xu,t). As usual we wish
) to use a comparison argument. Note, however, that z(x,t) is defined only for
t S x 2 Xy, while zztx,t) is defined in R X . wWe, therefore, set
‘,,. ’ z(2xy - x,t) for x < x,
M z4(x,t) =
- z(x,t) for x> x, ,
! and show that z4 < z, in R X% (0,T1). Note that since zx(xz,t) = 0, it follows
4; that z3(x,t) is a smooth function.,
';j Recall that L, is the operator defined by Lyv z Ve = Vg T f(v}). Note that
?‘ We now 1

Livp, =m = Lyvsye From the definitions it follows that z3(x,0) < zz(x,O).

apply Theorem 4.2 of [22] to oonclude that z,(x,t) < zz(x,t) in R X (0,T,).

Therefore, z(x,t) < z1(x - xo,t) in (x2,°) x (0,T1), from which it follows that

a(e) < Oi(t) + x5 < X3 + 1 for te (0,Ty). Since s(t) < o(t) the proof of the

lemma is now complete.,
Lemma 3.5: I = {(x,t) @ Dix = s(t)}.

Note that this lemma implies that s(t) is a continuous function in [0,T2].

Proof: Suppose the lemma is not true and let t, = 1nf(t=1t ¢+ {s(t)}}. From the

results of (23] it follows that ¢t, > 0. Note that s(t) must be coantinuous on
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{0,ty), and, because of assumption (3.2), A= titm s(t) exists. We first show
that I':1 = {A}. The proof is by contradiction,
Suppose that v(y,t1) = a3 for some y € (xz,l). Because of agsumption (3.2),
v > a in some rectangle R = (y - 8,y + 8) x (‘t:1 - B,t1). Since w<m in R (see
(3.23)) it follows that Lv =1 ~m > a = La in R. Theorem 2.1 now yields the
desired contradiction. A similar argument shows that it is impossible for
vily,ty) = a for some y > \. Hence, I,:1 = {A}.
Now suppose there exist a sequence of points {(yk,tk)} and {(zk'tk)}' k> 2,
such that:
(a) Y € 2 for k= 2,3,.e0 ,
(b) yx * A, 2z, * A, and t +t, as k+=,
() viyp ty) = vizy,t,) = a for k= 2,3,.00
Since vx(x,tl is assumed to be a continuous function it follows that vx(l,t1) = 0.
We show that this is impossible.
From assumption (3.2) it follows that there exist positive constants M and §
such that for tg - § ¢t < ty, either
(a) s(t) < ~M(t -~ ty) + X,
or (b) 8(t) > Mlt - t,) + X .
First suppose that (3.2b) holds. Then there exists a constant 6‘ > 0 such that
v > a in the trapezoid T = {(x,t):\ - 451 < x € M(t - c‘) +A, oty - -2—; <t < t1}.
In T, vix,t) is the solution of the linear equation ILv = 1 -~ w. Recall from
(3.23) that w<m in D. Therefore, in T, v =1 =w> 1 =m> a ? L(a). Since
v > a on the left, right, and bottom sides of 7T, it follows from Theorem 2.2 that
vx(l,t,‘) < 0. This oontradicts our previous conclusion that vx(X,t1) =04 A
similar argument shows that (3.2a) leads to a contradiction.
The following lemma completes the proof of Theorem 3.1,

Lemma 3.6. s(T) = Xg * 1 for some T @ (T,,Tz). Furthermore, s(t) > Xy + 1 in

(0, .




4 Proof: let Y(x) be some function which satisfies (3.25), and let u(x,t) be as in
) . .
(D). That is u satisfies the equation (3.24) in 0 with initial conditions

~ ul(x,0) = Y(x). In (D) we gave a formal proof that u < v in (D). Aan argument very

similar to that given in lemma 3.4 that v < zy in D gives a rigorous proof that ]
u<v in D. sSee [24, Lemma 4.5) for details. Hence s(t) > o(t) in (0,T,)
where o(t) = sup{x:u(x,t) = a}. Recall, from (3.26), that g(r,) > x5 + 1 and

o(t) > x; + 1 4in (0,T,). We define T by T = infltis(t) = x, +1}.

1 (F) Proof of Theorem 3.2

‘ We now prove Theorem 3.2. This will complete the proof of Theorem 1.1. Here we
- assume that the initial datum, v(x), satisfies (1.2), and w(x,0) 3 0. As usual,
the proof consists of applications of the comparison theorems. We shall need both an
upper and a lower bound for v(x,t). The comparison functions are now described.
Let z(x,t) be the solution of the differential equation:
Zp = 2., *+£(z) +m  in R X gt ,
z(x,0) = §(x) in R,
N where £(x) is a smooth function which satisfies:
) fa) &(x) e c2m ,

(b) E&E(x) = v for ~® < x < 1/2 , 7

{c) E'(x) <O for 1/2 < x <>,

&

3y

o a %

/2 [3
2 3 °F 3
(d) E(x) = ae for :<x<°.

g

" dtw

Note that a similar a function was used in step (E). Our remarks there demonstrate

that the curve O(t), given by z(0(t),t) = a, is a well defined, smooth function

T T

guch that 1lim o(t) = ®, The function 2z(x,t) will be used as an upper bound for
t”
vix,t).

k For a lower bound we oonsider the function u(x,t) defined to be the solution

. : of the differential equation:
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(3.36) LT f(u) - m tn R xn*,

u,(0,t) =0 in ®*,
with initial datum, u(x,0) = Y(x), to be determined. From Theorem 2.4 there exist
constants 91. 8, and Ty such that if §(x) satisfies (1.2) with x; > 61 then
the curve 01(t), given by u(c1(t),t) = a, 1is a well defined, smooth function such
that :i: 01(t) = o, 01(t) >xy = B8 in RY, and u(x,t) > d for x ¢ X - 8,

t > Ty Recall that 4 = q2(0) was defined in (3.17).

we let 8 = sup of(t) and Cy =8 + 81. From Theorem 2.4 there exists a

! ocecr,
constant T, such that 61(t) > xg + 81 for t > T,. We assume that

(3.37) A > Cy o

We first show that v(x,t) < z1(x,t) Z z{x - xo,t) in R x (0,T4). This is
done using a comparison argument. Note that v is defined in rt x 2% while z4
is defined in R x R*. Therefore, we let

v(-x,t) for x <0,
v1(x,t) =
vix,t) for x 20,
and
w(-x,t) for x <0,
welx,t) =
wix,t) for x>0,
and show that vy < z, in R X (0,T4). We first prove that if € is chosen
sufficiently small, then Lyv, < Lyzg in R X (0,T4). Recall that
Lyu 2 u, = u,, - f(u). Note that Lyzy = m. From (3.6) it follows that in

R X (0,T4), wy < evr Therefore, if

4.
€ ¢

VT4

it follows that Lyv, < Lyz, in R X (0,T4). It is also clear that
v1(x,0) < z1(x,0). An argument similar to that given in Lemma 3.4 shows that

vy < zy in R X (0,T,). (See [24] for details.) Hence, v ¢z, in R* x (0,T,).
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Let Oz(t) be defined by 21(02(t),t) = a. That is Uz(t) = g(t) + X5« Note that

s{t) < oz(t).
set I = {x:v(x,t) = a}. An argqument similar to that given in Lemma 3.5 shows
that I, = {a(t)}, and s(t) is a continuous function as long as s(t) > 0. To
show that s(t) > 0 in (0,T,) we consider the function u(x,t) defined to be the
solution of (3.36). For initjal datum we assume that u(x,0) = Y(x), where W¥(x)
satisfies (1.2) with X9 > 61. Furthermore, we assume that
(a) 0 < ¥(x) € p(x) in R,
(b) W(x) > a, 0<x<x3 =1,
(c) ‘Nx0 -1) =a.
We assume that 0 > 91 + 1. Therefore, if x; > 8, it follows that the curve
01(t), defined by u(o1(t),t) = a, is a well defined, smooth function such that
lim 01(c) = o, 61(t) >x -8 in R", ulx,t) > a for «x < Xy - B, t> T4, and

oo
01(T4) > x +8,. A proof similar to that given in Lemma 3.6 of (E) shows that

0 1

s(t) > 01(t) in (0,T4). Therefore,

(a) s(t) > Xy = B in (0,T4) ’
(3.38) (b) s(T4) > %y + 81 ,

(c) vix,t) > d for xe (0,x; - B), t> Ty .
Let T, = inflt:s(t) = x; + 81}.

Recall that s(t) < o_(t) = o(t) + x,, and B, = sup 0O(t). Therefore
2 o 1
0<tsT

s(t) < x4 + 81 for te (0,73). Since s(Tg) = x5 + 81 it"follows that T3 < Tg.

The proof of Theorem 3,2 is now split into a number of Lemmas.

Lemma 3.7: Iv(x,To)! < IGB(TO)(x)I for x > s(Ty).

Proof: Let G = {(x,t):x > s(t), t e (O,To)}. We first ghow that v > -a in G.

Note that v(s(t),t) = a, and vi(x,0) > -a for x > X5+ It was shown earlier
that w < m in G. Therefore, Lv = -w > -m > -a = L(~a) in (G. From Theorem 2.1

it now follows that v > -a in G. From the definition of 8(t) we conclude that

v ¢ a in G, and, therefore, |v| < a in G.




5
2 (stry)-n)
We now apply Proposition 2.5 with vo(x,t) = ae P
2
2 strgr-n)
v1(x,t) = -ae , and Go(x) B a‘(x) 2 0 to conclude that
2
2 (atrg)x
lvix,t) | < ae for x > s(Ty), t € (0,7q) . Therefore,
2
2 (atrg)-x)
vix,Ty)| € ae - 'Gs('ro)("” for x > s(Ty).

Lemma 3.8: 1If € is sufficiently small, then Iw(x,Ty)| < H'(To)(x) for
X > .(To)o

Proof: Assume that
m
e < — .
2'1'4

Since w(x,0) = 0, it follows from (3.6) that, for x > 8(Tj),

TO
Iwix,T )1 € € [ Ivix,m)an
0

L]

2 (a('l‘o)-x)

<
€T 430

7
2

n (s('ro)-x)
< 3 ae

- H-(‘l‘o)(x) *

temma 3.9: If € is sufficiently small then |w(x,‘r°)| < H’(To)(x) for
x e [0,8(Ty)).

Proof: Assume that

since w(x,0) = 0, it follows from (3.6) that, for x @ [0,3('1‘0)),
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lwix,T) | € € ({ Ivex,n)jan < evr, ¢ 3 < Hy(pq) ()

Lemma 3,10: Let P = {(x,t):0 < x < s(t),0 < t < 'ro}. Then v(x,t) >a in P,
Proof: Suppose that this is not true. From the results of [23] there must exist a
point (y.ty) @ P such that v(y,t,) =a and vix,t) <a in

P = {tx,t) @ P20 ¢ ¢ ¢ t1}. We use a comparison argument to show that this is
impossible .

Note that Lv = 1 ~w > 1 -m>a=1a in P,. Furthermore, wv(x,0) > a in
(O,xo), vis(t),t) = a in (0,t1), and vx(o,t) =0 in (0,ty). From Theorem 2.1
it follows that v(y,ty) > a which is a contradiction,

The following result completes the proof of Theorem 3.2,

Lemma 3,.11: Gs('ro)(") < vix,Tg) in [0,8(Tg)).

Proof: Since Gs(.ro)(x) =a for xe (s(T;) - X1,-(To)), the previous lemma
implies that Gs('ro)(") < vix,Ty) for x e (s(Ty) - k1,s('ro)). Recall, from
(3.38¢), that v(x,Ty) > d for x € {0,y - 8]. since Gs('ro)"‘) ¢ d for all x
the proof will be complete if we can show that 8(Tg) - 11 < %y - f. However, since
A > Cy (see (3.37)) it follows that

1

8(Tg) = A = x, + 81 - X' <yt By ~Cy=x=-8.

0
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APPENDIX
Here we present a precise description of the comparison functions Gxo(x) and
T on(x), and the various constants mentioned in the statement of Theorems 1.1, 3.1,
and 3.2. These functions and conatants are defined in their correct, logical order
without any attempt at motivation. We shall see that these constants and functions
depend only on the parameters a and Y.
t
‘ Set m = % nin(% -a,a) and Xs - loq[2(l—:-i£—1ial)]. Define g,(x) to be the
“
3 ! solution of the differential equation
¥l - R -
: g3 - gy =m~-1 in (=3,,00 .,
p - =
. 9,¢ Xa) = a, g5(0) =0 .
- +m -~ -
4 Note that g,(x) = [——— _x‘](g" +e) +1-m. let d=g,l0).
- . e 3 ‘e 3
i Recall from the introduction that there exist constants V and W such that
N Jvix,t)] < Vv and Jwix,t)| < W in R X R, Let 51(x) be a smooth function which
s .. satisfies (3.,35). Let 11(x,t) be the solution of the differential equation:
=
. - +
- Z4e Zixx ¥ r(z.‘) +m in RxXR ,
<
: z4(x,0) = 51(x) in R .
L]
, Define a,(t) by 31(01(c),t) = a, 01(0) = x5« A slight modification of the proof
'f of Theorem 2.4 shows that 01(t) is a smooth function such that 1lim 01(t) = o,
y Lo
i j Note that we cannot apply Theorem 2.4 directly because 51(x) # 51(-x) in RY. The
&
e,
j]_ proof of Theorem 2.4 i{s easier, however, with the assumption (3.35c). Let
¥y

Ty = 1nf(t=0‘(t) = 1},
From Theorem 2.4 we conclude that there exists a constant Cp with the

following property. Suppose that y > C, and z(x,t) satisfies the equations:

zZ, =z, * f(z) +m in R* x r*
g z,(0,t) = 0 in ®*
'1 z(x,0) = E(x) in R* .

Here &(x) is any smooth function which satisfies
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(a) E(x) e (v,2v) for 0 < x<y,
(d  £x) e cZmh ,
(e} E'(x) <O in R",

72

1 -
‘@ Ex) = ae > (y+ /5 =x}

for x>y +V.
Then the function 0(t), given by 2(0(t),t) = a is a well defined, smooth function

which satiasfies 1lim o(t) = =,

tm
2 14T, .
Let X2=1_(d+m)[ T Jta - a), ana A, =%, 42, Let
d for o<x<x3
g,(x)-
d~a

2
](x-la) forx<x<kz.

a-| 5

xZ

Define, for y > 0 and x e [0,y), g3(x,y) to be the solution of the
differential equation
3g
m 3
Bro=-z-nen (o575 .

qi(o,y) =0, gi(y.y) = a .

a"'m“;"'e-y n
ex+~§(x-y)-m.

o
®

x
+
-]

U

%
=
+

nis

Then, 93(xay) - [ Y
e + e

Let g(x) be the solution of the differential equation:
g" ~g=m in R+ ’
9(0) = a, g'(0) = -7,

Then, g{x) = [ 3 ][e ~e™ + (a+mle®~m. Note that g'(x) < 0 in R’

and 1lim g(x) = -*, Define Cy by q(cz) = -a,
xre

- -'W-':"“NA R :‘.‘ w! :u.“_h‘, ,:I‘

Y

TR ST N




Since a+2m<-;-,

Cy and T, with the following properties. Suppose tht y > Cy and let ¥(x) be

wa conclude from Theorem 2.4 that there exist oconstants

any smooth function which satisfies:

(a) ¥(x) e c2(m% ,

.

(b) W¥(x) e (-a,? - 2m) in R',

[ (c) ¥(x) >a for xe (0,y) ,

(@ ¥'(x) <0 in R, 1 -
1 (e) W¥(y) =a . % :
= 2
- Let u(x,t) be the solution of the differential equation
L “t’“xx"'f(“)'z“‘ in n’xn"’,
- W (0,t) =0 in ®*,

. ulx,0) = ¥(x) in r*.

Then the function oz(t). given by u(Oz(t),t) = a, 02(0) =y, 1is a well defined,

smooth function which satisfies:

(a) limoy(e) ==, ' ?

L

il (b) a.(t) > A, +1 in R,
. 2 2
1 () 0, (T)) >y +2.
]
. v’ From Theorem 2.4 it follows that there exist constants 91, B, and T3 with
the following properties. Let u,(x,t) be the solution of the equations
;f Uge = Uy + £(uy) =@ in rt xp*,

g, (0,8) =0 in ®*

with initial datum u‘(x,O) = n(x) which satisfies (1.2) with xq > 91. Then the

oy~

curve 03(2), given by u,(cj(t),t) = a, is a well defined smooth function which

3 satisfies:
(a) mo,(e) ==,
A toe
- (® o,(t) > x -8 in R*,

{e) uyix,t) > & for x<xo~8,c>'rs.
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let B, = s8up ¢

1

1(t) and Cy = B + 81. From Theorem 2.6 there exists a constant

T, such that 03(c) > xg + 61 for t > Ty,

A = .
Let A, max{co,c1,c2c3}

A4 -X4 4
Choose A, > 0 so that e - e =1, andlet 8 =0_+ § A.
4 1 k=1 k
Let § = min{51,62,63,54} where
5 = L
,
1 2\7'!.‘201 + Az + Aa)
.2
6, ==2-(1-¢ 2)
2 2VT ’
2
S - —2 ,
3 ZVT4
2
( n m m -—2"‘)
§ =—— min ——T———(1-x)+—-—e .
4 2 0¢x$1 2(11 + 2 + 33) 2 2
Finally, let
;G
¢ =2 (x ~x)
2 <
ae xXq < %
a x1'='x°-X1<x<x°
Gxo(x)-< gq(x = x,) x5 Ex,-kz<x<x1
gg(x = x,) x3Ex2-X3<x<x2
g3(x,x3) 0 ¢€x«< Xy
2
Ee_z (o) Xy € X
2 0
H, (x) =
*o

m m
T (% - x) +3 0 € x € % .
2(1+2+3) 0 2 0

=45~
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